Digital Circuits ECS 371

Dr. Prapun Suksompong prapun@siit.tu.ac.th Lecture 6

ECS371.PRAPUN.COM

Office Hours: BKD 3601-7 **9 - 10: 30** Monday 1:30-3:30 **AM** Tuesday 10:30-11:30

Announcement

- One more slot for office hours:
 - Monday 9:00-10:30 🗲
- I'm not limited to these time slots.
 - Usually in my office (BKD3601-7) from 8AM-5PM

Today

- Some of us participate in the SIIT day activities.
- So, the lecture today will contain no new material.
 - We will do a lot of examples
- These sides will be posted on the course web site later today.
 - Some of them are the same as what you have as hardcopy

The associative law for addition is normally written as) a. A + B = B + A Commutative law for addition $(b, A + B) + C = A + (B + C) \leftarrow associative$ c. AB = BA ~ commutative law for multiplication d. A + AB = ACovering

The Boolean equation AB + AC = A(B + C) illustrates a. the distribution law b. the commutative law \boldsymbol{X} c. the associative law \mathbf{X} d. DeMorgan's theorem X A+B = A·B $\overline{AB} = \overline{A} + \overline{B}$

The Boolean expression A + 1 is equal to

a. A b. B c. 0 d.1

The Boolean equation AB + AC = A(B + C) illustrates

a. the distribution law
b. the commutative law
c. the associative law
d. DeMorgan's theorem

Example Using Boolean algebra, simplify BD + B(D+E) + D(D+F)D.D **D**·F BR+BE X + X = X= BD + BE + DF standard $(=B(D+E)+\overline{D}F)$

$\overline{X+Y+2} = \overline{XYZ}$

Example

Example
Show that

$$(A+B)(A+C)(A+D) = A+BCD$$

$$A+|BC|$$

$$= (A+\Box)(A+\Delta) = A+\Box\Delta$$

$$= A+BCD$$

$$(A+G)(A+C)(A+D)(A+E) = A+(BCDE)$$

$$(\underline{B} + BC)(\underline{B} + \overline{B}C)(\underline{B} + D)$$

= B + (BCCD)
$$(\underline{B} + CD)(\underline{B} + D)$$

= B + O = B

$$ABC(AB + \overline{C}(BC + AC))$$

$$\overline{C}(B + A)$$

$$O$$

$$= ABC(AB + O)$$

$$= \overline{ABC(AB)} = ABC$$

 $Q: \text{ When does } A \cdot \overline{B} \cdot C = 1?$ iff (A, B, C) = (1, 0, 1)

Find the value of *X* for all possible values of the variables when

HWX2 K-map!