Digital Circuits ECS 371

Dr. Prapun Suksompong

 prapun@siit.tu.ac.th Lecture 6
Office Hours:

BKD 3601-7 9-10:30
Monday 1:30-3:30
Tuesday 10:30-11:30

Announcement

- One more slot for office hours:
- Monday 9:00-10:30 ↔
- I'm not limited to these time slots.
- Usually in my office (BKD3601-7) from 8AM-5PM

Today

- Some of us participate in the SIIT day activities.
- So, the lecture today will contain no new material.
- We will d a lot of examples
- These sides will be posted on the course web site later today.
- Some of them are the same as what you have as hardcopy
- HW 2 is posted

Due Next Thursday.

Example

The associative law for addition is normally written as commutative law for addition
b. $A+B)+C=A+(B+C) \leftarrow$ associative
c. $A B=B A$ commutative lan for
d. $A+A B=A$ multiplication

Covering

Example

The Boolean equation $A B+A C=A(B+C)$ illustrates
a. he distribution law
b. the commutative law \boldsymbol{X}
c. the associative law \boldsymbol{X}
d. DeMorgan's theorem $\quad \mathbf{X}$

$$
\begin{aligned}
& \overline{A+B}=\bar{A} \cdot \bar{B} \\
& \overline{A B}=\bar{A}+\bar{B}
\end{aligned}
$$

Example

multiplication

The Boolean expression $A \cdot 1$ is equal to
(a.) A
b. B
c. 0
d. 1

Example

The Boolean expression $A+1$ is equal to
a. A
b. B
c. 0
(d.) 1

Example

The Boolean equation $A B+A C=A(B+C)$ illustrates
a. he distribution law
b. the commutative law
c. the associative law
d. DeMorgan's theorem

Review: Three Useful Rules

These rules do not exist in elementary algebra
(1) $(A+B)(A+C)=A+B C$
covering
(2) $A+A B=A$ (3) $A+\bar{A} B=A+B<$
$A(1+B)$
$=A \cdot 1=A \quad \square+\square \cdot \Delta=A+B(\underbrace{A+\bar{A})}=A+B \cdot 1=$ Examples:

$$
X Y+X Y Z=X Y
$$

$\rightarrow W \bar{X} Y+W Y=W Y$

$$
\begin{aligned}
& =w y \cdot x+w y \\
& =W Y
\end{aligned}
$$

Example
Using Boolean algebra, simplify

$$
\begin{aligned}
& \quad B D+\underbrace{B(D+E}_{0})+\underbrace{\bar{D}(D+F)}_{\bar{D} \cdot D+\bar{D} \cdot F} \\
& =B D+B E+\bar{D} F \leftarrow \begin{array}{r}
\text { standard } \\
\text { form. }
\end{array} \\
& (=B(D+E)+\overline{D F}) \quad
\end{aligned}
$$

Example

$$
\overline{X+y+z}=\bar{x} \bar{y} \bar{z}
$$

Using Boolean algebra, simplify

$$
\begin{aligned}
& \bar{A} \bar{B} C+\underbrace{\overline{(A+B+\bar{C})}}_{=\bar{A} \bar{B} C}+\bar{A} \bar{B} \bar{C} D \\
&= \bar{A} \bar{B} C+\bar{A} \bar{B} C+\bar{A} \bar{B} \bar{C} D \\
&= \bar{A} \bar{B}(\underbrace{C+\bar{C} D}_{C+D})=\bar{A} \bar{B}(C+D) \\
&=\bar{A} \bar{B} C+\bar{A} \bar{B} D
\end{aligned}
$$

Example
Show that

$$
\begin{aligned}
& (\underbrace{A+B)(A+C}_{A+B C})(A+D)=A+B C D \\
& =(A+\square)(A+\Delta)=A+\square \Delta \\
& =A+B C D \\
& (A+B)(A+C)(A+D)(A+E)=A+(B C D E)
\end{aligned}
$$

Example
Using Boolean algebra, simplify

$$
\begin{aligned}
& (B+B C)(\underline{B+} \bar{B} C)(B+D) \\
= & B+(B C \overline{B C D}) \\
= & B+O=B
\end{aligned}
$$

Example
Using Boolean algeby, simplify

$$
\begin{aligned}
& \underbrace{A B C D+A B(\overline{C D}}_{1})+(\overline{A B}) \stackrel{K}{C D} \\
& (X+Y)+Z \\
= & \\
& A B+(y+z) \\
= & A B+\overline{A B C D})
\end{aligned}
$$

Example

Using Boolean algebra, simplify

$$
\begin{aligned}
& A B C(A B+ \\
& +\bar{C}(B C+A C)) \\
= & A B C(A B+O) \\
= & A B C(B-A) \\
& =A B C
\end{aligned}
$$

Example
Using Boolean algebra, simplify

$$
\begin{aligned}
& \underbrace{\bar{A}+A \bar{B}}_{\bar{A}+\bar{B}}+A B \bar{C} \\
&= \bar{A}+\underbrace{}_{\bar{B}+B(A \bar{C})} \\
&=\bar{B}+A \bar{C} \\
&= \bar{A}+\bar{B}+A \bar{C}=\bar{A}+\bar{B}+\bar{C}=\overline{A \cdot B \cdot C}
\end{aligned}
$$

Product Term $<$

A ingle literabr a product of two or more literals.
Example: $A \cdot \bar{B} \cdot C$ $A \cdot C \longleftarrow$
$\longrightarrow A$

$$
\begin{aligned}
& A \cdot \bar{B} \cdot C \cdot D \\
& \bar{A} \cdot \bar{B} \cdot \bar{C} \quad \longleftarrow
\end{aligned}
$$

Caution:
$\xrightarrow[A \cdot D \cdot C]{ }$ is not a product term.
Q : When does $A \cdot \bar{B} \cdot C=1$?
iff
$(A, B, C)=(1,0,1)$

$$
\bar{A} \bar{B} C=1
$$

Example

$$
(A B C)=(0,0,1)
$$

Find the value of X for all possible values of the variables when

Example
Find the value of X for all possible values of the variables when $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow d \begin{array}{ll}10 \\ 111\end{array}$

$$
A \bar{B} C+A \bar{B} \bar{C}+A B C=X=A \bar{B}+4 B C
$$

A	B	C
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

$" C "$ is free!

What make a product term corresponds to only 1 row in the truth table?

A: Each term should have all variables.

Example

Find the value of X for all possible values of the variables when

$$
X=\underline{\underline{O} O}+\begin{gathered}
111 \\
\bar{A} \bar{C}
\end{gathered}+\underline{A B C} \leftarrow \text { SOP }
$$

A	B	C	\times
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Example

Find the value of X for all possible values ${ }^{f}$. bariables .

